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Abstract. A non-Markovian stochastic predator-prey model is introduced in which the prey are immobile
plants and predators are diffusing herbivors. The model is studied by both mean-field approximation (MFA)
and computer simulations. The MFA results a series of bifurcations in the phase space of mean predator
and prey densities, leading to a chaotic phase. Because of emerging correlations between the two species
distributions, the interaction rate alters and if it is chosen to be the value which is obtained from the
simulation, then the chaotic phase disappears.

PACS. 87.23.Cc Population dynamics and ecological pattern formation – 05.45.-a Nonlinear dynamics
and nonlinear dynamical systems – 82.20.Wt Computational modeling; simulation

1 Introduction

The time evolution of systems of interacting species mod-
eling natural ecosystems has attracted wide attention
since its first studies by Lotka [1] and Volterra [2]. Various
models have been introduced in order to consider differ-
ent aspects of natural life, including motion, birth and
death processes, evolution and extinction [3–5]. Physical
motivation for studying such models is that they exhibit
interesting features such as chaos and critical phenomena.

A much studied category of such models is that
of two interacting species, the so called predator-prey
systems [6,7]. However, most of the existing models ne-
glect the effect of time delays on the dynamics of the
models. By time-delayed systems we mean such systems
that their dynamics is not defined only by knowing their
present state, but some information about previous states
is required. Time delays are present in many different
physical or biological systems, and are particularly able to
account for many features of ecological phenomena [3,8,9],
although they have not been studied extensively.

In this paper we introduce a new model of the
predator-prey problem with history-dependent dynamics.
In our model, herbivors and edible plants are the preda-
tors and the prey, respectively. The predators stray ran-
domly in a plant-full environment, eating them when they
find any, but the eaten plant will regrow after a defi-
nite elapsed time. The predators reproduce with a con-
stant rate and die, if they have not eaten anything in a
specified length of time. In our model, time delays enter
the temporal evolution equations through the terms rep-
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resenting plants growth and predators death. Somewhat
similar models without such time delays were published
before [10,11].

The set of time-delayed equations leads to a rich col-
lection of dynamical behaviors including chaos. As we will
show, however, the emerging space correlation of the den-
sities can eliminate the chaotic behavior.

We have studied this model by discrete-time, lattice-
based computer simulations, as well as by a mean-field
approximation solution. In what follows we describe our
model and then present and discuss the results.

2 The model

The ecosystem consists of a(n infinite) square lattice each
site of which if not empty, is occupied by either preda-
tors or a plant. The predators move randomly to one of
the nearest neighbors (two-dimensional free random walk)
and do not interact with each other, therefore multiple oc-
cupancy of the site is allowed. If a predator enters a site
occupied by a plant, it will eat it. However after c time
steps another plant grows at that site.

To every predator an energy is assigned, indicating the
number of steps that it can go without eating anything. As
a result, the energy is lowered by one at every time step.
Eating a plant raises the energy to the maximum value l,
so that a predator that has not eaten anything in l steps
will die. At every time step each predator reproduces with
probability b. The offspring is positioned at the same site
and half of the parent’s energy is transferred to it.

These rules are applied in the following order. The
predators are first moved in a random sequence. They eat
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Fig. 1. Predator and plant mean densities with respect to time for l = 20, b = 0.02, c = 80, p(0) = 0.01 and n(0) = 0.75. (a)
p(t), (b) n(t).

every plant that they can, after which they reproduce with
some probability and finally plant growth occurs. In the
case of more than one predator entering a plant site, the
early comer eats the plant.

The rules governing the motion of the predators are
those that are characteristics of branching diffusion pro-
cesses, for which the space and time average quantities
as well as spatial correlations have been investigated [12].
What we examine in the following sections is the time
evolution of the mean spatial densities of predators and
plants.

3 Fixed points and cluster formation

We first present the results obtained from simulating the
model. Simulations are made on a M ×M square lattice
with M = 100 and with periodic boundary conditions.
As initial conditions, predators and plants are distributed
randomly and the value of l is assigned to the energy of
every predator. The sites that are initially plant-free must
be filled with plants in the first c steps, so a random integer
τ , 0 < τ < c, is assigned to every such site, and a plant
occupies that site at the t = τ ’s time step .

Let P (x, t) and N(x, t) denote predator and plant re-
spective local densities and p(t) and n(t) be their re-
spective spatial mean values, i.e. p(t) = 〈P (x, t)〉 and
n(t) = 〈N(x, t)〉 (where 〈.〉 stands for spatial averaging).
P (x, t) is an integer number including 0, while N(x, t) is
either 0 or 1. p(t) and n(t) are assumed to be equal to the
probability of predators and plants occupying a lattice site
(assuming that p does not become larger than one).

As expected, time evolution of the two species can lead
to a stationary state (Fig. 1) in which both n and p fluctu-
ate about their (time independent) mean values, and the
fluctuations are predominantly anticorrelated (in the sense
that when p goes up, n comes down and vice versa). There-
fore by averaging n(t) and p(t) over many realizations of

Fig. 2. Fixed point in the phase space of expectation values of
predator and plant mean densities (〈〈p〉〉, 〈〈n〉〉), for the same
parameter set as in Figure 1.

the system we find a fixed point in the (〈〈p〉〉, 〈〈n〉〉) phase
space (Fig. 2) (where 〈〈.〉〉 represents the expectation value
found by averaging over different realizations).

Trivially, (n, p) = (1, 0) is also a fixed point (extinction
state). In a wide range of parameters this is unstable, and
there exists the just described active oscillatory state with
a (〈〈p〉〉, 〈〈n〉〉) stable fixed point. But in a large region in
the parameter space of l, b and c, the point (1, 0) is stable
and there is no non-extinction stationary state. This is
the case for sufficiently large c (low growth rate for the
plants), low l (low energy content of a plant) or low b
(low predator birth rate). Even an unstable fixed point,
(1, 0) can be reached (in transient region) by specific initial
conditions that are large p(0) or large n(0). In the latter
case, the initially high density of plants increases p and
decreases n very much and consequently all the predators
die of starvation. In the following we consider the non-
trivial (non-extinction) stationary state.
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Fig. 3. Distribution of predators and plants in a 100 × 100
lattice for l = 20, b = 0.02, c = 60 and t = 500. Predators are
represented by black dots and plants by grey.

Although the predators (plants) have no interaction
with each other, the spatial distributions of N(x) and
P (x) are not uniform in the stationary state. This is due to
the rules of the game that are random motion of predators
and the laws of birth and death [13]. As a typical pattern,
Figure 3 shows the emergence of clusters of predators and
plants for l = 20, b = 0.02, c = 60 and t = 500, when the
system is in its stationary state. Formation of the clusters
is characterized quantitatively by the predator or plant
autocorrelation functions defined by

Cn(d) =
〈N(x + d)N(x)〉 − n2

n2
(1)

Cp(d) =
〈P (x + d)P (x)〉 − p2

p2
· (2)

These clusters form separately, since if there is a plant at
a site no predators can be at the same site. This is shown
by the predator-plant correlation function:

Cnp(d) =
〈N(x + d)P (x)〉 − np

np
· (3)

Figure 4 shows 〈〈Cn(d)〉〉, 〈〈Cp(d)〉〉 and 〈〈Cnp(d)〉〉 as
functions of d along the lattice axis , for the same param-
eter set as in Figure 3. They all vanish as d increases, but
while Cn and Cp are positive functions for small d, repre-
senting formation of the clusters, Cnp is negative since the
probability that a plant occupies a site decreases if there is
a predator in the neighborhood. Diffusion of the predators
increases the fluctuations in Cp and Cnp. An exponential
function best fits to Cn with correlation length increasing
with c.

(a)

(b)

(c)

Fig. 4. Expectation values of (a) autocorrelation func-
tion of predators (b) autocorrelation function of plants
(c) predator-plant correlation function, as a function of d
along the lattice axis (with unit vector i) for l = 20,
b = 0.02, c = 150 and t = 500. An exponential
function best fits to Cn with correlation length increasing
with c.
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Fig. 5. Numerically calculated expectation value of r(t) as a
function of t for l = 20, b = 0.02 and c = 60, with 0.54 mean
value for t > 400.

4 Mean-field approximation

We consider the correlation of the predators and plants
within a mean-field approximation. If the probabilities
that a site is occupied by a predator or a plant were in-
dependent, the density of the eaten plants at every time
step would be given by

∆−n(t) = n(t)p(t) (4)

i.e. ∆−n(t) is the probability of that a site is simultane-
ously occupied by both a predator and a plant. To take
into account the just described correlations, we modify
this expression, by writing as

∆−n(t) = rn(t)p(t) (5)

where 0 < r < 1 and also can be thought of as a rate.
Stronger correlations imply larger clusters which lowers
the value of r. Introduction of r < 1 rate, can also be
justified in this way: since predators move randomly, a
predator lowers its food-eating chance by repeatedly com-
ing back to the sites which had previously been occupied
by itself and it had eaten the plants in them. We show
that r is an important parameter that controls the ability
of the system to transit into a chaotic phase.

To calculate r(t) by simulation, we enumerate the total
number of the eaten plants at time t and divide it by
M2n(t)p(t). Figure 5 represents as a function of time, the
value of 〈〈r(t)〉〉 for l = 20, b = 0.02 and c = 60 which
indicates that it becomes essentially a constant at about
〈〈r(t)〉〉 ' 0.54 in the stationary state. In fact 〈〈r(t)〉〉
varies slightly as a, b and c change. The value of r can also
be read from the correlation function (Fig. 4c). Since the
probability that a plant is eaten is 1/4 of the probability
that a predator and a plant are nearest neighbors, and this
probability is equal to the probability of finding a predator
and a plant within a unit distance i, we have

∆−n = rnp = 〈n(x + i)n(x)〉 (6)

then

Cnp(i) = r − 1. (7)

From Figure 4c we find that Cnp(i) ' 0.46 and r = 0.54
in complete agreement with the independently calculated
value of r (Fig. 5).

The time evolution equations will then be

n(t+1) = n(t)+r[n(t−c+1)p(t−c+1)− n(t)p(t)] (8)

p(t+ 1) = p(t)

{
(1 + b)−

l−1∏
t′=0

[1− rn(t − t′)]
}
. (9)

The second term on the right-hand side of equation (8)
is ∆−n(t) and the first is ∆+n(t) = ∆−n(t − c + 1), the
density of the plants eaten at time (t − c + 1) which will
grow again after c steps at time t + 1. The second term
on the right-hand side of equation (9) is the probability
of a predator not eating anything in each of the past l
steps. At any time, a predator does not eat a plant with
a probability

p(t)− rn(t)p(t)
p(t)

= 1− rn(t) (10)

i.e. the ratio of density of those predators who do not eat
to the total predators density.

5 Solution of the mean-field equations

In order to find the possible solutions of this set of equa-
tions, we numerically compute p(t+1) and n(t+1), know-
ing the values of p and n at the earlier times. By repeatedly
doing this, we can find all the possible trajectories in the
(p, n) phase space. However, because of the existence of
time delays, it is not sufficient to know only p and n at
time 0 in order to initiate these equations. Therefore, to
overcome this difficulty we rewrite these equations as

n(t+ 1) = n(t)+
1−n(0)

c
−rn(t)p(t) for t < c (11)

p(t+ 1) = p(t)(1 + b) for t < l. (12)

We drop the rn(t−c+1)p(t−c+1) term from equation (8)
for t < c, and add the term

1− n(0)
c

(13)

to take into account growing of the plants in the initially
plant-free sites. Also, we eliminate the second term in
equation (9) for t < l because of the initially full energy
of all the predators.

As in the case of the simulations, (1, 0) is a trivial fixed
point, which is unstable only for sufficiently low l, low b
or high c and long-time behavior of the solutions does not
depend on the values of n(0) and p(0). Here, we do not
consider that range of the parameters for which extinction
occurs. In order to find a fixed point (Fig. 6) we assume
that n and p are constant for a long time, that is n(t′) = n∗
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Fig. 6. A fixed point in (p, n) phase space, derived from mean-
field equations, for l = 20, b = 0.02 and c = 38.

Fig. 7. A limit cycle in (p, n) phase space, derived from mean-
field equations, for l = 20, b = 0.02 and c = 67.

for t− l ≤ t′ ≤ t and p(t− c+ 1) = p(t) = p∗. This leads
to

n∗ =
1
r

[1− (1 + b)1/l] (14)

(which is independent of c) but no explicit expression for
p∗. However, interestingly, as we have checked numerically,
there also exists a unique p∗ and the fixed point (specially
its p-coordinate) is uniquely determined by the parameters
and independent of initial conditions.

Although r is obtained definitely from simulation, we
assume it to be variable. It is easily seen that the dynam-
ics of the equations depends critically on the value of r.
We temporarily assume r = 1 which means neglecting the
correlations and clustering. For every l and b the fixed
point is stable for low c. As c is increased, the fixed point
eventually loses its stability through a Hopf bifurcation
and turns to a limit cycle (Fig. 7). As c is increased fur-
ther, more bifurcations occur which lead to the chaotic
phase (Fig. 8). Figure 9 represents the bifurcation dia-
gram, which is the Poincare maps for constant l and b and
varying c, obtained from the intersection of trajectories in
the phase space with the vertical line n = n∗. Figure 10
is the same graph for the same set of parameters except

(a)

(b)

(c)

Fig. 8. Long-time behavior of other possible solutions of mean-
field equations, as c is increased with other parameters constant
(transients have been omitted): (a) two cycles for c = 75 (b)
four cycles for c = 82 (c) chaos for c = 84, in this case the total
area is filled in the long times.

that r = 0.48 (see below), in which the chaotic regime has
been eliminated.

We found that the time-evolution equations with
a realistic value of r(l, b, c) which is obtained from
the simulation, do not exhibit a chaotic behavior. This
is similar to what occurs in the simulation which always
there exists a stationary state. However, setting r = 1
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Fig. 9. Bifurcation diagram: intersection points of trajectories
in the phase space with vertical line n = n∗, for the same l and
b as Figure 7 and r = 1.

Fig. 10. The same as Figure 9 but with r = 0.48.

artificially, can produce a chaotic behavior. This has an
interesting interpretation: formation of the clusters and
emergence of correlations removes the chaotic regime.

Finally, Figure 11 offers a comparison between the
mean-field results and those of the computer simulations.
Here, the fixed points in (〈〈p〉〉, 〈〈n〉〉) phase space derived
from simulation and the time-average of (p, n) obtained
from the mean-field equations are shown with l = 20,
b = 0.02, and varying c from 65 to 150. r is chosen so that
the two curves best coincide and that occurs if r ' 0.48.

6 Conclusion

We have introduced and studied a model for the predator-
prey problem with time delay in which the prey are edible
plants and the predators are herbivores. The model is de-
fined algorithmically through a series of rules that are i)
random-walk motion of the predators; ii) growth of the
eaten plants after a time delay, and iii) death of those
predators not having eaten anything in a specified length
of time. Both rules ii and iii generate history dependence
in the mean-field equations. Simulation of the model on
a lattice yields stationary states with fixed points in the

Fig. 11. Comparison of simulation and mean-field results:
black squares are numerically calculated fixed points in
(〈〈p〉〉, 〈〈n〉〉) phase space. White squares are time average of p
vs. time average of n derived from mean-field equations. r is
chosen to be 0.48 which best coincides two curves.

phase space of (〈〈p〉〉, 〈〈n〉〉) as well as a trivial (1, 0) fixed
point.

In such stationary states, the predators and the prey
are distributed in separately-formed clusters and hence
producing non-zero autocorrelation as well as correlation
functions. Such correlations are taken into account in the
mean-field equations by introduction of a rate r < 1 in
the expression of the eaten plants density. These equa-
tions have chaotic solutions for r nearly 1, but there is no
chaos if r is lowered to its true value obtained from the
simulation.
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